CYP3A5 and ABCB1 genotype influence tacrolimus and sirolimus pharmacokinetics in renal transplant recipients

نویسندگان

  • Yi Li
  • Lin Yan
  • Yunying Shi
  • Yangjuan Bai
  • Jiangtao Tang
  • Lanlan Wang
چکیده

CYP3A5 and ABCB1 polymorphisms have been shown to influence tacrolimus blood concentrations and dose requirements, but the conclusion in the current reports were inconformity. Sirolimus are also metabolized by CYP3A subfamily and are substrates of the P-gp. The aim was to determine whether these polymorphisms affect tacrolimus (TAC) and sirolimus (SRL) trough concentrations and dose requirements after renal transplantation. 153 renal transplant recipients were enrolled into this study, 112 were treated with TAC-based regimen, Another 43 recipients received SRL-based regimen. The recipients' mean follow-up time was 20 mo (range 15-27 mo). All renal transplant recipients were all in a stable stage. The trough concentration and daily dose of TAC and SRL were gained from each recipient. All recipients were genotyped for CYP3A5 (6986A>G), CYP3A4 intron 6 (CYP3A4*22), CYP3A4*18, ABCB1 exon 26 (3435C>T), exon 12 (1236C>T) and 2677G>T/A SNPs by HRM analysis (high-resolution melting curve analysis). The TAC and SRL concentration/dose ratio (C/D) in recipients with CYP3A5 (*)3/(*)3 were significantly higher than that of those with (*)1 allele (P < 0.05). However, there was no significant correlation between adjusted TAC and SRL trough concentrations or dose requirements with CYP3A4 and ABCB1 SNPs genetic polymorphisms. In recipients with TAC-based or SRL-based therapy, the CYP3A5 genes (6986A>G) can influence the TAC and SRL pharmacokinetics in renal transplant recipients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CYP3A5 genotype does not influence everolimus metabolism and in vitro clinical pharmacokinetics in renal transplant recipients

Background genotyping might be useful to guide tacrolimus and sirolimus dosing. The aim of this study was to assess the influence of CYP3A5 polymorphism on everolimus metabolism and pharmacokinetics. CYP3A5

متن کامل

CYP3A5 genotype does not influence everolimus in vitro metabolism and clinical pharmacokinetics in renal transplant recipients.

BACKGROUND CYP3A5 genotyping might be useful to guide tacrolimus and sirolimus dosing. The aim of this study was to assess the influence of CYP3A5 polymorphism on everolimus metabolism and pharmacokinetics. METHODS We investigated the effect of CYP3A5 6986A>G polymorphism (CYP3A5*1/*3 alleles) on the pharmacokinetics of everolimus in 28 renal transplant patients and on its in vitro hepatic me...

متن کامل

Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients.

Tacrolimus is a substrate of cytochrome P4503A (CYP3A) enzymes as well as of the drug transporter ABCB1. We have investigated the possible influence of CYP3A5 and ABCB1 single nucleotide polymorphisms (SNPs) and other factors (e.g. albumin, hematocrit and steroids) on tacrolimus blood levels achieved in a population of Caucasian liver (n=51) and kidney (n=50) transplant recipients. At 1, 3 and ...

متن کامل

The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients.

Cyclosporine and tacrolimus are immunosuppressive drugs largely used in renal transplantation. They are characterized by a wide inter-individual variability in their pharmacokinetics with a potential impact on their therapeutic efficacy or induced toxicity. CYP3A5 and P-glycoprotein appear as important determinants of the metabolism of these drugs. The objective of this study was to investigate...

متن کامل

CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study.

Genetic polymorphisms in biotransformation enzyme CYP3A5 (6986G > A, CYP3A5*3; 14690A > G, CYP3A5*6) and drug transporter ABCB1 (1236C > T; 2677G > T/A; 3435C > T) are known to influence tacrolimus (Tac) dose requirements and trough blood levels in stable transplant patients. In a group of 19 volunteers selected with relevant genotypes among a list of 221 adult renal transplant candidates, we e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015